Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.567
Filtrar
1.
Int J Psychophysiol ; 199: 112340, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574820

RESUMO

Sokolov described both phasic and tonic aspects of the Orienting Reflex (OR), but subsequent research and theory development has focussed primarily on the phasic OR at the expense of the tonic OR. The present study used prestimulus skin conductance level (SCL) during a dishabituation paradigm to model the tonic OR, examining its amplitude patterning over repeated standard stimulus presentations and a change stimulus. We expected sensitisation (increased amplitude) following the initial and change trials, and habituation (decrement) over the intervening trials. Prestimulus EEG alpha level was explored as a potential central measure of the tonic OR (as an inverse correlate), examining its pattern over stimulus repetition and change in relation to the SCL model. We presented a habituation series of innocuous auditory stimuli to two groups (each N = 20) at different ISIs (Long 13-15 s and Short 5-7 s) and recorded electrodermal and EEG data during two counterbalanced conditions; Indifferent: no task requirements; Significant: silent counting. Across groups and conditions, prestimulus SCLs and alpha amplitudes generally showed the expected trials patterns, confirming our main hypotheses. Findings have important implications for including the assessment of Sokolov's tonic OR in modelling central and autonomic nervous system interactions of fundamental attention and learning processes.


Assuntos
Resposta Galvânica da Pele , Habituação Psicofisiológica , Humanos , Habituação Psicofisiológica/fisiologia , Orientação/fisiologia , Reflexo/fisiologia , Atenção/fisiologia , Estimulação Acústica
2.
Neuroreport ; 35(5): 291-298, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38407865

RESUMO

OBJECTIVE: Orientation selectivity is an emergent property of visual neurons across species with columnar and noncolumnar organization of the visual cortex. The emergence of orientation selectivity is more established in columnar cortical areas than in noncolumnar ones. Thus, how does orientation selectivity emerge in noncolumnar cortical areas after an adaptation protocol? Adaptation refers to the constant presentation of a nonoptimal stimulus (adapter) to a neuron under observation for a specific time. Previously, it had been shown that adaptation has varying effects on the tuning properties of neurons, such as orientation, spatial frequency, motion and so on. BASIC METHODS: We recorded the mouse primary visual neurons (V1) at different orientations in the control (preadaptation) condition. This was followed by adapting neurons uninterruptedly for 12 min and then recording the same neurons postadaptation. An orientation selectivity index (OSI) for neurons was computed to compare them pre- and post-adaptation. MAIN RESULTS: We show that 12-min adaptation increases the OSI of visual neurons ( n  = 113), that is, sharpens their tuning. Moreover, the OSI postadaptation increases linearly as a function of the OSI preadaptation. CONCLUSION: The increased OSI postadaptation may result from a specific dendritic neural mechanism, potentially facilitating the rapid learning of novel features.


Assuntos
Orientação , Córtex Visual , Animais , Camundongos , Orientação/fisiologia , Estimulação Luminosa/métodos , Neurônios/fisiologia , Córtex Visual/fisiologia , Aprendizagem
3.
Hum Brain Mapp ; 45(3): e26588, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401136

RESUMO

Attention network theory proposes three distinct types of attention-alerting, orienting, and control-that are supported by separate brain networks and modulated by different neurotransmitters, that is, norepinephrine, acetylcholine, and dopamine. Here, we explore the extent of cortical, genetic, and molecular dissociation of these three attention systems using multimodal neuroimaging. We evaluated the spatial overlap between fMRI activation maps from the attention network test (ANT) and cortex-wide gene expression data from the Allen Human Brain Atlas. The goal was to identify genes associated with each of the attention networks in order to determine whether specific groups of genes were co-expressed with the corresponding attention networks. Furthermore, we analyzed publicly available PET-maps of neurotransmitter receptors and transporters to investigate their spatial overlap with the attention networks. Our analyses revealed a substantial number of genes (3871 for alerting, 6905 for orienting, 2556 for control) whose cortex-wide expression co-varied with the activation maps, prioritizing several molecular functions such as the regulation of protein biosynthesis, phosphorylation, and receptor binding. Contrary to the hypothesized associations, the ANT activation maps neither aligned with the distribution of norepinephrine, acetylcholine, and dopamine receptor and transporter molecules, nor with transcriptomic profiles that would suggest clearly separable networks. Independence of the attention networks appeared additionally constrained by a high level of spatial dependency between the network maps. Future work may need to reconceptualize the attention networks in terms of their segregation and reevaluate the presumed independence at the neural and neurochemical level.


Assuntos
Acetilcolina , Orientação , Humanos , Orientação/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Imageamento por Ressonância Magnética/métodos , Norepinefrina
4.
J Neurosci ; 44(10)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38286624

RESUMO

Navigating a complex world requires integration of multiple spatial reference frames, including information about one's orientation in both allocentric and egocentric coordinates. Combining these two information sources can provide additional information about one's spatial location. Previous studies have demonstrated that both egocentric and allocentric spatial signals are reflected by the firing of neurons in the rat postrhinal cortex (POR), an area that may serve as a hub for integrating allocentric head direction (HD) cell information with egocentric information from center-bearing and center-distance cells. However, we have also demonstrated that POR HD cells are uniquely influenced by the visual properties and locations of visual landmarks, bringing into question whether the POR HD signal is truly allocentric as opposed to simply being a response to visual stimuli. To investigate this issue, we recorded HD cells from the POR of female rats while bilaterally inactivating the anterior thalamus (ATN), a region critical for expression of the "classic" HD signal in cortical areas. We found that ATN inactivation led to a significant decrease in both firing rate and tuning strength for POR HD cells, as well as a disruption in the encoding of allocentric location by conjunctive HD/egocentric cells. In contrast, POR egocentric cells without HD tuning were largely unaffected in a consistent manner by ATN inactivation. These results indicate that the POR HD signal originates at least partially from projections from the ATN and supports the view that the POR acts as a hub for the integration of egocentric and allocentric spatial representations.


Assuntos
Núcleos Anteriores do Tálamo , Ratos , Feminino , Animais , Orientação/fisiologia , Percepção Espacial/fisiologia
5.
J Neurosci ; 44(3)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38050093

RESUMO

Human visual performance for basic visual dimensions (e.g., contrast sensitivity and acuity) peaks at the fovea and decreases with eccentricity. The eccentricity effect is related to the larger visual cortical surface area corresponding to the fovea, but it is unknown if differential feature tuning contributes to this eccentricity effect. Here, we investigated two system-level computations underlying the eccentricity effect: featural representation (tuning) and internal noise. Observers (both sexes) detected a Gabor embedded in filtered white noise which appeared at the fovea or one of four perifoveal locations. We used psychophysical reverse correlation to estimate the weights assigned by the visual system to a range of orientations and spatial frequencies (SFs) in noisy stimuli, which are conventionally interpreted as perceptual sensitivity to the corresponding features. We found higher sensitivity to task-relevant orientations and SFs at the fovea than that at the perifovea, and no difference in selectivity for either orientation or SF. Concurrently, we measured response consistency using a double-pass method, which allowed us to infer the level of internal noise by implementing a noisy observer model. We found lower internal noise at the fovea than that at the perifovea. Finally, individual variability in contrast sensitivity correlated with sensitivity to and selectivity for task-relevant features as well as with internal noise. Moreover, the behavioral eccentricity effect mainly reflects the foveal advantage in orientation sensitivity compared with other computations. These findings suggest that the eccentricity effect stems from a better representation of task-relevant features and lower internal noise at the fovea than that at the perifovea.


Assuntos
Sensibilidades de Contraste , Córtex Visual , Masculino , Feminino , Humanos , Orientação/fisiologia , Córtex Visual/fisiologia , Fóvea Central/fisiologia , Ruído
6.
Exp Brain Res ; 242(1): 79-97, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37962638

RESUMO

The attention networks test (ANT) is frequently utilized to evaluate executive, alerting, and orienting attentional components. Additionally, it serves as an activation task in neuroimaging studies. This study aimed to examine the relationship between attention networks and brain electrophysiology. The study enrolled 40 right-handed male students (age = 20.8 ± 1.3 years) who underwent the revised attention network test, while their electroencephalogram signals were recorded. The study aimed to explore the effects of attention networks and their efficiencies on brain electrophysiology. The results indicated that the P3 amplitude was modulated by the conflict effect in the central (p-value = 0.014) and parietal (p-value = 0.002) regions. The orienting component significantly influenced P1 and N1 latencies in the parietal and parieto-occipital regions (p-values < 0.006), as well as P1 and N1 amplitude in the parieto-occipital region (p-values = 0.017 and 0.011). The alerting component significantly affected P1 latency and amplitude in the parietal and parieto-occipital regions, respectively (p-value = 0.02). Furthermore, N1 amplitude and the time interval between P1 and N1 were significantly correlated with the efficiency of alerting and orienting networks. In terms of connectivity, the coherence of theta and alpha bands significantly decreased in the incongruent condition compared to the congruent condition. Additionally, the effects of attention networks on event-related spectral perturbation were observed. The study revealed the influence of attention networks on various aspects of brain electrophysiology. Specifically, the alerting score correlated with the amplitude of the N1 component in the double-cue and no-cue conditions in the parieto-occipital region, while the orienting score in the same region correlated with the N1 amplitude in the valid cue condition and the difference in N1 amplitude between the valid cue and double-cue conditions. Overall, empirical evidence suggests that attention networks not only impact the amplitudes of electrophysiological activities but also influence their time course.


Assuntos
Encéfalo , Orientação , Humanos , Masculino , Adulto Jovem , Adulto , Orientação/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Eletroencefalografia , Lobo Occipital , Eletrofisiologia , Tempo de Reação/fisiologia
7.
Proc Biol Sci ; 290(2013): 20232499, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38113940

RESUMO

Currently, it is generally assumed that migratory birds are oriented in the appropriate migratory direction under UV, blue and green light (short-wavelength) and are unable to use their magnetic compass in total darkness and under yellow and red light (long-wavelength). However, it has also been suggested that the magnetic compass has two sensitivity peaks: in the short and long wavelengths, but with different intensities. In this project, we aimed to study the orientation of long-distance migrants, pied flycatchers (Ficedula hypoleuca), under different narrowband light conditions during autumn and spring migrations. The birds were tested in the natural magnetic field (NMF) and a changed magnetic field (CMF) rotated counterclockwise by 120° under dim green (autumn) and yellow (spring and autumn) light, which are on the 'threshold' between the short-wavelength and long-wavelength light. We showed that pied flycatchers (i) were completely disoriented under green light both in the NMF and CMF but (ii) showed the migratory direction in the NMF and the appropriate response to CMF under yellow light. Our data contradict the results of previous experiments under narrowband green and yellow light and raise doubts about the existence of only short-wavelength magnetoreception. The parameters of natural light change dramatically in spectral composition and intensity after local sunset, and the avian magnetic compass should be adapted to function properly under such constantly changing light conditions.


Assuntos
Orientação , Aves Canoras , Animais , Orientação/fisiologia , Migração Animal/fisiologia , Aves Canoras/fisiologia , Magnetismo , Estações do Ano
8.
PLoS Comput Biol ; 19(12): e1011704, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38150484

RESUMO

An influential account of neuronal responses in primary visual cortex is the normalized energy model. This model is often implemented as a multi-stage computation. The first stage is linear filtering. The second stage is the extraction of contrast energy, whereby a complex cell computes the squared and summed outputs of a pair of the linear filters in quadrature phase. The third stage is normalization, in which a local population of complex cells mutually inhibit one another. Because the population includes cells tuned to a range of orientations and spatial frequencies, the result is that the responses are effectively normalized by the local stimulus contrast. Here, using evidence from human functional MRI, we show that the classical model fails to account for the relative responses to two classes of stimuli: straight, parallel, band-passed contours (gratings), and curved, band-passed contours (snakes). The snakes elicit fMRI responses that are about twice as large as the gratings, yet a traditional divisive normalization model predicts responses that are about the same. Motivated by these observations and others from the literature, we implement a divisive normalization model in which cells matched in orientation tuning ("tuned normalization") preferentially inhibit each other. We first show that this model accounts for differential responses to these two classes of stimuli. We then show that the model successfully generalizes to other band-pass textures, both in V1 and in extrastriate cortex (V2 and V3). We conclude that even in primary visual cortex, complex features of images such as the degree of heterogeneity, can have large effects on neural responses.


Assuntos
Orientação , Córtex Visual , Humanos , Orientação/fisiologia , Córtex Visual/diagnóstico por imagem , Córtex Visual/fisiologia , Neurônios/fisiologia , Imageamento por Ressonância Magnética/métodos , Estimulação Luminosa/métodos
9.
Vision Res ; 213: 108318, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37742454

RESUMO

Experience or training can substantially improve perceptual performance through perceptual learning, and the extent and rate of these improvements may be affected by feedback. In this paper, we first developed a neural network model based on the integrated reweighting theory (Dosher et al., 2013) to account for perceptual learning and performance in n-alternative identification tasks and the dependence of learning on different forms of feedback. We then report an experiment comparing the effectiveness of response feedback (RF) versus accuracy feedback (AF) or no feedback (NF) (full versus partial versus no supervision) in learning a challenging eight-alternative visual orientation identification (8AFC) task. Although learning sometimes occurred in the absence of feedback (NF), RF had a clear advantage above AF or NF in this task. Using hybrid supervision learning rules, a new n-alternative identification integrated reweighting theory (I-IRT) explained both the differences in learning curves given different feedback and the dynamic changes in identification confusion data. This study shows that training with more informational feedback (RF) is more effective, though not necessary, in these challenging n-alternative tasks, a result that has implications for developing training paradigms in realistic tasks.


Assuntos
Julgamento , Percepção Visual , Humanos , Retroalimentação , Percepção Visual/fisiologia , Orientação/fisiologia , Aprendizagem/fisiologia
10.
Eur J Neurosci ; 58(6): 3503-3517, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37547942

RESUMO

Visual context modulates perception of local orientation attributes. These spatially very localised effects are considered to correspond to specific excitatory-inhibitory connectivity patterns of early visual areas as V1, creating perceptual tilt repulsion and attraction effects. Here, orientation misperception of small Gabor stimuli was used as a probe of this computational structure by sampling a large spatio-orientation space to reveal expected asymmetries due to the underlying neuronal processing. Surprisingly, the results showed a regular iso-orientation pattern of nearby location effects whose reference point was globally modulated by the spatial structure, without any complex interactions between local positions and orientation. This pattern of results was confirmed by the two perceptual parameters of bias and discrimination ability. Furthermore, the response times to stimulus configuration displayed variations that further provided evidence of how multiple early visual stages affect perception of simple stimuli.


Assuntos
Neurônios , Orientação , Estimulação Luminosa/métodos , Orientação/fisiologia , Neurônios/fisiologia , Tempo de Reação/fisiologia , Percepção , Percepção Visual/fisiologia , Percepção Espacial/fisiologia
11.
PeerJ ; 11: e15694, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37456887

RESUMO

Faces oriented rightwards are sometimes perceived as more dominant than faces oriented leftwards. In this study, we explored whether faces oriented rightwards can also elicit increased attentional orienting. Participants completed a discrimination task in which they were asked to discriminate, by means of a keypress, a peripheral target. At the same time, a task-irrelevant face oriented leftwards or rightwards appeared at the centre of the screen. The results showed that, while for faces oriented rightwards targets appearing on the right were responded to faster as compared to targets appearing on the left, for faces oriented leftwards no differences emerged between left and right targets. Furthermore, we also found a negative correlation between the magnitude of the orienting response elicited by the faces oriented leftwards and the level of conservatism of the participants. Overall, these findings provide evidence for the existence of a spatial bias reflected in social orienting.


Assuntos
Atenção , Orientação , Humanos , Atenção/fisiologia , Orientação/fisiologia
12.
Proc Biol Sci ; 290(2001): 20231118, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37357864

RESUMO

Human vision in the periphery is most accurate for stimuli that point towards the fovea. This so-called radial bias has been linked with the organization and spatial selectivity of neurons at the lowest levels of the visual system, from retinal ganglion cells onwards. Despite evidence that the human visual system is radially biased, it is not yet known whether this bias persists at higher levels of processing, or whether high-level representations are invariant to this low-level orientation bias. We used the case of face identity recognition to address this question. The specialized high-level mechanisms that support efficient face recognition are highly dependent on horizontally oriented information, which convey the most useful identity cues in the fovea. We show that face selective mechanisms are more sensitive on the horizontal meridian (to the left and right of fixation) compared to the vertical meridian (above and below fixation), suggesting that the horizontal cues in the face are better extracted on the horizontal meridian, where they align with the radial bias. The results demonstrate that the radial bias is maintained at high-level recognition stages and emphasize the importance of accounting for the radial bias in future investigation of visual recognition processes in peripheral vision.


Assuntos
Reconhecimento Facial , Orientação , Humanos , Orientação/fisiologia , Estimulação Luminosa/métodos , Percepção Visual , Fóvea Central
13.
Front Neural Circuits ; 17: 1157228, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37123106

RESUMO

Introduction: How does gravity (or lack thereof) affect sensory-motor processing? We analyze sensorimotor estimation dynamics for line segments with varying direction (orientation) in a 7-day dry immersion (DI), a ground-based model of gravitational unloading. Methods: The measurements were carried out before the start of the DI, on the first, third, fifth and seventh days of the DI, and after its completion. At the memorization stage, the volunteers led the leading hand along the visible segment on a touchscreen display, and at the reproduction stage they repeated this movement on an empty screen. A control group followed the same procedure without DI. Results: Both in the DI and control groups, when memorizing, the overall error in estimating the lengths and directions of the segments was small and did not have pronounced dynamics; when reproducing, an oblique effect (higher variability of responses to oblique orientations compared to cardinal ones) was obtained. We then separated biases (systematic error) and uncertainty (random error) in subjects' responses. At the same time, two opposite trends were more pronounced in the DI group during the DI. On the one hand the cardinal bias (a repulsion of orientation estimates away from cardinal axes) and, to a small extent, the variability of direction estimates decreased. On the other hand, the overestimation bias in length estimates increased. Discussion: Such error pattern strongly supports the hypotheses of the vector encoding, in which the direction and length of the planned movement are encoded independently of each other when the DI disrupts primarily the movement length encoding.


Assuntos
Imersão , Orientação , Humanos , Orientação/fisiologia , Movimento/fisiologia , Sensação , Percepção
14.
Sci Rep ; 13(1): 7365, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147445

RESUMO

Perception of social stimuli (faces and bodies) relies on "holistic" (i.e., global) mechanisms, as supported by picture-plane inversion: perceiving inverted faces/bodies is harder than perceiving their upright counterpart. Albeit neuroimaging evidence suggested involvement of face-specific brain areas in holistic processing, their spatiotemporal dynamics and selectivity for social stimuli is still debated. Here, we investigate the spatiotemporal dynamics of holistic processing for faces, bodies and houses (adopted as control non-social category), by applying deep learning to high-density electroencephalographic signals (EEG) at source-level. Convolutional neural networks were trained to classify cortical EEG responses to stimulus orientation (upright/inverted), separately for each stimulus type (faces, bodies, houses), resulting to perform well above chance for faces and bodies, and close to chance for houses. By explaining network decision, the 150-200 ms time interval and few visual ventral-stream regions were identified as mostly relevant for discriminating face and body orientation (lateral occipital cortex, and for face only, precuneus cortex, fusiform and lingual gyri), together with two additional dorsal-stream areas (superior and inferior parietal cortices). Overall, the proposed approach is sensitive in detecting cortical activity underlying perceptual phenomena, and by maximally exploiting discriminant information contained in data, may reveal spatiotemporal features previously undisclosed, stimulating novel investigations.


Assuntos
Aprendizado Profundo , Face , Orientação/fisiologia , Eletroencefalografia , Cabeça , Estimulação Luminosa/métodos , Reconhecimento Visual de Modelos/fisiologia , Mapeamento Encefálico/métodos
15.
Nature ; 615(7954): 892-899, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36949190

RESUMO

The head direction (HD) system functions as the brain's internal compass1,2, classically formalized as a one-dimensional ring attractor network3,4. In contrast to a globally consistent magnetic compass, the HD system does not have a universal reference frame. Instead, it anchors to local cues, maintaining a stable offset when cues rotate5-8 and drifting in the absence of referents5,8-10. However, questions about the mechanisms that underlie anchoring and drift remain unresolved and are best addressed at the population level. For example, the extent to which the one-dimensional description of population activity holds under conditions of reorientation and drift is unclear. Here we performed population recordings of thalamic HD cells using calcium imaging during controlled rotations of a visual landmark. Across experiments, population activity varied along a second dimension, which we refer to as network gain, especially under circumstances of cue conflict and ambiguity. Activity along this dimension predicted realignment and drift dynamics, including the speed of network realignment. In the dark, network gain maintained a 'memory trace' of the previously displayed landmark. Further experiments demonstrated that the HD network returned to its baseline orientation after brief, but not longer, exposures to a rotated cue. This experience dependence suggests that memory of previous associations between HD neurons and allocentric cues is maintained and influences the internal HD representation. Building on these results, we show that continuous rotation of a visual landmark induced rotation of the HD representation that persisted in darkness, demonstrating experience-dependent recalibration of the HD system. Finally, we propose a computational model to formalize how the neural compass flexibly adapts to changing environmental cues to maintain a reliable representation of HD. These results challenge classical one-dimensional interpretations of the HD system and provide insights into the interactions between this system and the cues to which it anchors.


Assuntos
Sinais (Psicologia) , Cabeça , Neurônios , Orientação , Tálamo , Sinalização do Cálcio , Cabeça/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Orientação/fisiologia , Orientação Espacial/fisiologia , Rotação , Tálamo/citologia , Tálamo/fisiologia
16.
Proc Natl Acad Sci U S A ; 120(9): e2214539120, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36812198

RESUMO

The head-direction (HD) system, a key neural circuit for navigation, consists of several anatomical structures containing neurons selective to the animal's head direction. HD cells exhibit ubiquitous temporal coordination across brain regions, independently of the animal's behavioral state or sensory inputs. Such temporal coordination mediates a single, stable, and persistent HD signal, which is essential for intact orientation. However, the mechanistic processes behind the temporal organization of HD cells are unknown. By manipulating the cerebellum, we identify pairs of HD cells recorded from two brain structures (anterodorsal thalamus and retrosplenial cortex) that lose their temporal coordination, specifically during the removal of the external sensory inputs. Further, we identify distinct cerebellar mechanisms that participate in the spatial stability of the HD signal depending on sensory signals. We show that while cerebellar protein phosphatase 2B-dependent mechanisms facilitate the anchoring of the HD signal on the external cues, the cerebellar protein kinase C-dependent mechanisms are required for the stability of the HD signal by self-motion cues. These results indicate that the cerebellum contributes to the preservation of a single and stable sense of direction.


Assuntos
Orientação , Tálamo , Animais , Orientação/fisiologia , Tálamo/fisiologia , Giro do Cíngulo , Cerebelo , Neurônios/fisiologia , Cabeça/fisiologia , Movimentos da Cabeça/fisiologia
17.
Sci Adv ; 9(3): eadd2498, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36662858

RESUMO

Neurons in the primary visual cortex (V1) respond to stimuli in their receptive field (RF), which is defined by the feedforward input from the retina. However, V1 neurons are also sensitive to contextual information outside their RF, even if the RF itself is unstimulated. Here, we examined the cortical circuits for V1 contextual responses to gray disks superimposed on different backgrounds. Contextual responses began late and were strongest in the feedback-recipient layers of V1. They differed between the three main classes of inhibitory neurons, with particularly strong contextual drive of VIP neurons, indicating a contribution of disinhibitory circuits to contextual drive. Contextual drive was strongest when the gray disk was perceived as figure, occluding its background, rather than a hole. Our results link contextual drive in V1 to perceptual organization and provide previously unknown insight into how recurrent processing shapes the response of sensory neurons to facilitate figure perception.


Assuntos
Córtex Visual , Camundongos , Animais , Córtex Visual/fisiologia , Neurônios/fisiologia , Retina , Neurônios Aferentes , Orientação/fisiologia , Percepção Visual/fisiologia , Estimulação Luminosa/métodos
18.
Vision Res ; 205: 108174, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36630779

RESUMO

The tilt aftereffect (TAE) is observed when adaptation to a tilted contour alters the perceived tilt of a subsequently presented contour. Thus far, TAE has been treated as a local aftereffect observed only at the location of the adapter. Whether and how TAE spreads to other locations in the visual field has not been systematically studied. Here, we sought an answer to this question by measuring TAE magnitudes at locations including but not limited to the adapter location. The adapter was a tilted grating presented at the same peripheral location throughout an experimental session. In a single trial, participants indicated the perceived tilt of a test grating presented after the adapter at one of fifteen locations in the same visual hemifield as the adapter. We found non-zero TAE magnitudes in all locations tested, showing that the effect spreads across the tested visual hemifield. Next, to establish a link between neuronal activity and behavioral results and to predict the possible neuronal origins of the spread, we built a computational model based on known characteristics of the visual cortex. The simulation results showed that the model could successfully capture the pattern of the behavioral results. Furthermore, the pattern of the optimized receptive field sizes suggests that mid-level visual areas, such as V4, could be critically involved in TAE and its spread across the visual field.


Assuntos
Pós-Efeito de Figura , Percepção de Forma , Humanos , Percepção de Forma/fisiologia , Orientação/fisiologia , Estimulação Luminosa/métodos , Campos Visuais
19.
PLoS One ; 18(1): e0280955, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36696435

RESUMO

Numerous studies have shown that eye-gaze and arrows automatically shift visuospatial attention. Nonetheless, it remains unclear whether the attentional shifts triggered by these two types of stimuli differ in some important aspects. It has been suggested that an important difference may reside in how people select objects in response to these two types of cues, eye-gaze eliciting a more specific attentional orienting than arrows. To assess this hypothesis, we examined whether the allocation of the attentional orienting triggered by eye-gaze and arrows is modulated by the presence and the distribution of reference objects (i.e., placeholders) on the scene. Following central cues, targets were presented either in an empty visual field or within one of six placeholders on each trial. In Experiment 2, placeholder-objects were grouped following the gestalt's law of proximity, whereas in Experiment 1, they were not perceptually grouped. Results showed that cueing one of the grouped placeholders spreads attention across the whole group of placeholder-objects when arrow cues were used, while it restricted attention to the specific cued placeholder when eye-gaze cues were used. No differences between the two types of cues were observed when placeholder-objects were not grouped within the cued hemifield, or no placeholders were displayed on the scene. These findings are consistent with the idea that socially relevant gaze cues encourage a more specific attentional orienting than arrow cues and provide new insight into the boundary conditions necessary to observe this dissociation.


Assuntos
Fixação Ocular , Orientação , Humanos , Tempo de Reação/fisiologia , Orientação/fisiologia , Campos Visuais , Sinais (Psicologia)
20.
Cereb Cortex ; 33(5): 2048-2060, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-35609335

RESUMO

How do attentional networks influence conscious perception? To answer this question, we used magnetoencephalography in human participants and assessed the effects of spatially nonpredictive or predictive supra-threshold peripheral cues on the conscious perception of near-threshold Gabors. Three main results emerged. (i) As compared with invalid cues, both nonpredictive and predictive valid cues increased conscious detection. Yet, only predictive cues shifted the response criterion toward a more liberal decision (i.e. willingness to report the presence of a target under conditions of greater perceptual uncertainty) and affected target contrast leading to 50% detections. (ii) Conscious perception following valid predictive cues was associated to enhanced activity in frontoparietal networks. These responses were lateralized to the left hemisphere during attentional orienting and to the right hemisphere during target processing. The involvement of frontoparietal networks occurred earlier in valid than in invalid trials, a possible neural marker of the cost of re-orienting attention. (iii) When detected targets were preceded by invalid predictive cues, and thus reorienting to the target was required, neural responses occurred in left hemisphere temporo-occipital regions during attentional orienting, and in right hemisphere anterior insular and temporo-occipital regions during target processing. These results confirm and specify the role of frontoparietal networks in modulating conscious processing and detail how invalid orienting of spatial attention disrupts conscious processing.


Assuntos
Magnetoencefalografia , Orientação , Humanos , Tempo de Reação/fisiologia , Orientação/fisiologia , Atenção/fisiologia , Percepção Visual/fisiologia , Sinais (Psicologia) , Percepção Espacial/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...